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I. INTRODUCTION

Since the very beginning of the application of numerical methods to elec-

tromagnetics, there has been a keen interest in developing computer codes for

treating radiation and scattering problems involving arbitrarily-shaed con-

ducting bodies. Of the various possible approaches available to developers

of such codes, the most commonly used have been wire-grid and surface patch

modeling in conjunction with integral equation formulations.

The wire-grid modeling approach has been remarkably successful in many

problems, particularly in those requiring the prediction of far-field quanti-

ties such as radiation patterns and radar cross-sections [1]. The approach is

not as well-suited for calculating near-field and surface quantities, such as

surface current and input impedance, however. Some of the difficulties en-

counter(4 in wire-grid modeling include the occasional presence of ficticious

loop currents in the solution, difficulties with internal resonances (2], and

problems of relating computed wire currents to equivalent surface currents.

The accuracy of wire-grid modeling has also been questioned on theoretical

grounds [3]. These difficulties have provided strong incentives for developing

surface patch approaches as alternatives to wire-grid techniques.

Several approaches to surface patch modeling have been suggested. Knepp

and Goldhirsh [4] partition a surface into non-planar quadrilateral patches

and employ the magnetic field integral equation (MFIE) to solve the electro-

magnetic problem. Albertsen et al. [5] solve for the current and compute ra-

diation patterns for satellite structures with attached wire antennas, booms,

and solar panels. They use the MFIE with planar quadrilateral surface patches

to model the satellite, and use the electric field integral equation (EFIE)
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to treat the wire antennas in their hybrid formulation. The arbitrary surface

treatment of the widely-used Numerical Electromagnetic Code (NEC) developed

at the Lawrence Livermore Laboratory [6] is also based on the formulation of

Albertsen et al. Wang et al. [7] extend the use of piecewise-sinusoidal basis

functions, well-known in wire analyses, to the treatment of surfaces. They

use an EFIE formulation and model surfaces by planar rectangular patches.

Sankar and Tong [8] employ planar triangular patches to model a square plate

and point out the possibility of extending their approach to arbitrary bodies.

Their formulation, based on a variational formula for the current which is

made stationary with respect to a set of trial functions, is equivalent to a

Galerkin solution of the EFIE. Wang [9,10] employs planar triangular patches

in conjunction with the MFIE and uses basis functions which contain the phase

variation of the incident field in each latch. Unfortunately, this procedure

makes the resultant moment matrix depend on the incident field. Jeng et al.

[11] propose using the MFIE and non-planar triangles to model arbitrary sur-

faces. Singh and Adams (12] propose using planar quadrilateral patches and

sinusoidal basis functions with the EFIE.

In arbitrary surface modeling, the EFIE has the advantage that it applies

to both open and closed bodies, whereas the MFIE applies to closed bodies only.

On the other hand, for arbitrarily-shaped objects the EFIE is much more diffi-

cult to deal with, as attested to by the fact that of the EFIE formulations

discussed, only Wang et al. have actually treated non-planar structures--aud

their formulation is limited to structures with curvature in one dimension

only. The difficulties with the EFIE stem primarily from the presence of

derivatives and a singular kernel in the integral equation. One manifestation

of the derivatives is that if basis functions representing the current are not

2



constructed such that their normal components are continuous across surface

edges, then line or point charges are deposited along the edges. If present,

these ficticious charges usually lead to deleterious effects in the solution.

The approach of Wang et al. [7] is, as they point out, free of these diffi-

culties, but their use of rectangular patches restricts their consideration

to (finite) cylindrical surfaces. More appropriate for modeling arbitrarily-

shaped surfaces are planar triangular patch models such as shown in Fig. 1.

Some of the advantages of triangular patch surface modeling have been

noted by Sankar and Tong [8], as well as Wang [9]. For example, triangular

patches have the ability to conform to any geometrical surface and boundary,

they permit simple descriptions of the surface and patch scheme to the computer,

and they may be used with greater patch densities on those portions of the

surface where more resolution is desired. (Although planar quadrilateral

patch modeling shares many of these features, the vertices of planar quadri-

laterals may not be independently specified because all four vertices must

lie in the same plane.)

In this report we use planar triangular patch modeling and apply the

method of moments [13] to develop numerical procedures for both the EFIE and

MFIE formulations. The computer code based on the EFIE is capable of handling

either open or closed and arbitrarily-curved structures of finite extent.

Discounting limitations of the computer, the code can, in fact, treat any

object whose surface is orientable, connected (i.e., the body does not com-

prise, in reality, two or more separate objects), and free of intersecting

surfaces. Not only open and closed surfaces, but also multiply-connected

objects such as the structure with a "handle" (c.f. Appendix A) shown in Fig.

1 are admissable. The computer code based on the MFIE has the same range of

3
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Fig. 1. Arbitrary surface modeled by triangular patches.
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applicability, except that it is restricted to closed surfaces. Both the

EFIE and MFIE approaches developed are simple and efficient to apply.

We remark that a previous paper has considered the electrostatic problem

of determining the charge distribution on arbitrarily-shaped conducting bodies

modeled by triangular patches [14]. We note also that the formulation used there

is related to the static limit of the present EFIE formulation and that both

formulations employ piecewise constant charge representations.

In the following section, we present the EFIE formulation. A new set of,

basis functions defined on triangular patches is described and used to repre-

sent the current in the moment method. These new basis functions are free of

ficticious line or point charges and are analogous to the so-called "rooftop"

functions defined on planar rectangular subdomains [15].

The MFIE formulation, which also makes use of these new basis functions,

is presented in Section III. Despite its lack of generality, the MFIE formu-

lation is important because its moment matrix is required in problems of

scattering by dielectric objects [16], and in the so-called combined field

integral equation formulation [17]. The latter is a technique for eliminating

difficulties in both the EFIE and MFIE formulations for scattering problems

at frequencies corresponding to the cavity resonances of the interior region

for closed surfaces.

In Section IV, numerical results obtained using tue ELSIE formulation are

presented for triangular patch models of a flat square plate, a bent rectang-

ular plate, a circular disk, and a sphere. Results obtained using the MFIE

are also presented for the sphere problem.

5



II. ELECTRIC FIELD FORMULATION

In this section, we derive an integral equation for the surface current

induced on a conducting scatterer from the boundary conditions on the electric

field. A set of expansion functions and a testing procedure are then devel-

oped for use in applying the method of moments, and the moment matrix is de-

rived. Finally, the evaluation of elements of the moment matrix is discussed.

Electric Field Integral Equation

Let S denote the surface of an open or closed, perfectly conducting

scatterer. An electric field E', defined in the absence of the scatterer,

is incident and induces surface currents J on S. If S is open, we regard

at each point as che vector sum of the currents on opposite sides of the sur-

face. We can compute the scattered electric field Es from the surface current

by

ES= _jw V (1)

where the magnetic vector potential is defined as

A(r) = j R dS' (2)

S

and the scalar potential is

4(r) ' T = dS' (3)4TTF R"

S
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An exp(jwt) time dependence is assumed and suppressed, and k = w'-= 2/X,

where X is the wavelength. The permeability and permittivity of the sur-

rounding medium are v and c, respectively, and R = Ir - r' is the distance

between an arbitrarily-located observation point r and a source point r' lo-

cated on S. Both r and r' are defined with respect to a global coordinate

origin 0. The surface charge density a is related to the surface divergence

of J through the equation of continuity,

V- j = -jwa. (4)

We derive the integro-differential equation for J by applying the boun-

dary condition fi x (E' + Es) 0 on S, obtaining,

_E (-jwA-V ) r on S. (5)
tan tan'

Eq. (5), with (2) - (4), constitutes the so-called electric field integral

equation (EFIE). One notes that the presence of derivatives on the current

in (4) and on the scalar potential in (5) suggests that one should be careful

in selecting the expansion functions and testing procedure in the method of

moments. In the next section, we choose expansion functions which yield a

continuous current and a piecewise constant charge representation.

Develpmentof Basis Functions

In this section, we discuss a set of basis functions, originally pro-

posed by Glisson [18], which are suitable for use with the EFIE and triang-

ular patch modeling. We assume a suitable triangulation approximating S and

defined by a set of faces, edges, vertices, and boundary edges (c.f. Fig. I).

Fig. 2 shows two triangles T+ and T-, associated with the nth edge of a
n n

.. ......... . .. ..... .......



n- nth edge

Fig. 2. Local coordinates associated with an edge.
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triangulated surface modeling a scatterer. Points in T+may be designatedn

either by the position vector i, defined with respect to 0, or by the position

vector pn, defined with respect to the free vertex of T+. Similar remarks

n n

apply to the position vector pn except that it is directed toward the free

vertex of T . It is assumed that the plus or minus designation of the tri-
n

angles has been chosen such that the positive current reference direction

(c.f. Appendix A) associated with the nth edge is from T+ to T-. We define
n n

th
a vector basis function associated with the n edge as

n-+ +2A +  Pn r inTnrin

n

n (6)f(r) p ---nO r in T-

2A n
n

0, otherwise,

+ +

where Z is the length of the edge and A- is the area of triangle T-. (Note
n n n

that we use the convention, followed throughout the report, that subscripts

refer to edges while superscripts refer to faces.) The new basis function n

is to be used to approximately represent the current, and we list here some

of its properties which make it uniquely suited to this role:

i) The current has no component normal to any of the edges except

the common edge (edge n) of T+ and T-; were this not the case, the
n

continuity equation (4) would demand the presence of line charges

along these edges.

ii) The surface divergence of the basis current, which is proportional

9



to the surface charge density, is

n - +- , rinT
A+ n

n

in T (7)
V inA

n

0 , otherwise,

where the surface divergence in T is (±i/Pn) (Pnf )/ p. The

n n n n n

charge density is thus constant in each triangle, the total charge

associated with the triangle pair T and T is zero, and the basis
n n

fanctions for the charge evidently have the form of a pulse doub-

let [15].

th
iii) The component of current crossing the n edge is continuous, and

hence no line charge exists there; this may be seen by Fig. 3

which shows that the normal component of p- along edge n is just
n

+

the height of triangle T with edge n as the base and with the
n

height expressed as (2An)/-. These factors are used to normalize

f such that its flux density normal to edge n is unity in (6),n

hence ensuring continuity of current normal to the edge.

iv) The moment of f is given by (A+ + A-)f a v g where
n n n n

(A+ + ,-)?avg fdS n ( -c+ -c-

(A~~~ +Af - +T(p +

n n = r n(n C+ -  c -  (8)n c 
nn nn

and p is defined between the free vertex and the centroid of

+ -c+ -c-
T with p n directed away from the vertex and p ndirected toward

10
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Fig. 3. Geometry showing normal component of basis
function at edge.
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the vertex, as shown in Fig. 4, and r c± is the vector from
n

+

0 to the centroid of T-; Eq. (8) may be most easily verified by

expressing the integral therein in terms of area coordinates,

which are discussed later in this report.

Except for boundary edges, a basis function f is associated with each edgen

of the triangulated structure. The current on S may be approximated in terms

of the f as

n
N

I f (r) (9)
n1 n n

where N is the number of edges not on a surface boundary. Since a basis

function is associated with each non-boundary edge, up to three non-zero

basis functions may exist within each triangular face. At each edge, how-

ever, only the basis function associated with that edge may have a component

of current normal to the edge; by (i), all other basis currents in that face

are parallel to the edge. Furthermore, since the normal component of f at
n

th
the n edge is unity, each coefficient I in (9) may be interpreted as then

th
normal component of current density flowing past the n edge. Because the

normal component of current at a surface boundary must vanish anyway, we need

not bother to define basis functions associated with boundary edges, and

hence (9) includes only contributions from non-boundary edges.

The radial nature of the current flow associated with each basis function

is at first disconcerting--certainly for a small triangle modeling a smooth

section of the scatterer surface, one would not expect the direction of the

actual current to vary substantially within the triangle. Turning the ques-

tion around, one might ask, "Can a superposition of the basis functions within

a triangle represent, say, a constant vector in the triangle?" That the

12



0

Fig. 4. Geometry of vectors to centroids of triangles
associated with an edge.
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answer is affirmative can be seen with the aid of Fig. 5, which shows a

triangle T with the edges arbitrarily labeled 1, 2, and 3. With the vectors

Pit P2 and p3 as shown, the basis functions in T are f, M (Zi/2A) Pip i = 1,

2,3, where A is the triangle area and where, for simplicity, we assume that

the current reference directions are out of the triangle for each edge. It

is apparent from the definition of f and the figure that the linear combina-

tions k2 f - Z1f2 and Z3 f - Z1f3 are constant vectors for every point r in-

side the triangle and are parallel to sides 3 and 2, respectively. Since

the two composite forms are linearly independent (i.e., non-parallel), a con-

stant vector of arbitrary magnitude and direction within the triangle may be

synthesized by an appropriate linear combination of the two forms, as asserted.

Testing Procedure

The next step in applying of the method of moments is to select the test-

ing procedure. As testing functions, we choose the expansion functions nn

developed in the previous section. With the symmetric product definition

-> = Y g dS, (10)

we test Eq. (5) with fm' yielding

<Ef > = jw <A, f > + <V(, f >. (11)

m m m

By standard surface vector calculus formulas [19], the last term in (11) can

be rewritten as

<Vf = - Vs m dS, (12)
m S

where use has been made of the fact that none of the f has a component nor-
m

mal to any part of the boundary of S. Using (7), we next approximate the

14



Fig. 5. Edges and local coordinates associated
with a triangle.
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integral in (12) as follows:

f (DV . dS k (D I dS - -- D dS]

S s m M'm fT+ A T-m m m m

~m f0 (r+ - (r (j (13)

where the two averages of 0 over triangles T+ and T- have been approximated by

m m

the corresponding values of D at the centroids of the triangles. We similarly

approximate the integration of the vector potential and incident field terms

in (11):

A A 2AL T=> k [-I fT dS + P {A PdS]
Am mT~A m m

ID E-gC+ + { -c- ~ ~ (14)I X r ( r ) -

where the integrals are eliminated by approximating E and A with their values

at the centroid of each triangle and then carrying out integrations similar

to those used to obtain (8). With (12) - (14), (11) now become7

-c+ c-

ji, P +-C+ -C+ c)m 2'm m 2D m mj

m i(ic+) " .- + Ei ( c - (15)

which is the equation to be enforced at each triangle edge, M 1,2,..., N.

Another interpretation of the testing procedure arriving at (15) is also pos-

sible. One may integrate the vector component of (5) parallel to the path

from the point rC+ to (r C+ + PC+ /2) and thence to rC- , approximating Ei and A i

16



along each portion of the path by their respective values at the triangle

centroids. The resulting equality, when multiplied by Zm, is Eq. (15). Under

either interpretation, the purpose of the testing procedure is reduce the

differentiability requirement on P by integrating it first. The purpose of

approximations (13) and (14) is to remove all surface integrals of potential

',antities; were this not done, a prohibitively expensive two-fold surface

integration would be required to fill the moment matrix since computation of

the potentials themselves already involves one surface integration.

Evaluation of Matrix Elements

Substitution of the current expansion (9) into (15) yields an N x N

system of linear equations which may be written in matrix form as

Z I = V (16)

where Z = [Z Mn is an N x N matrix and I = [I n] and V = [Vm] are column vec-

tors of length N. Elements of Z and V are given by

-c+ c-[ m - m ) +

Z m• + n. + 4mn m- (17)

V k +• m + P-° m
V m m 2 m _2 (18)

where +
-JkR--+ (m

A - Y W,) + dS', (19)
mn 47 S R-

m

-jkR 
-

= - 1 V • f(P) e dS', (20)

n 4ffjwc Js +fS R-
m

m m

17



and
-+ -i ±)
E=E (rM. (21)m

For plane wave incidence, we set

E(r) = (E ° + Eo) ejk r r (22)

where the propagation vector k is

= (k sin 0o cos o x + sin 0 sin o 0 + cos o Z) (23)

and (0 )) defines the angle from which the plane wave arrives in the usual

spherical coordinate convention. The unit vectors 0 and $ are constant0 0

vectors which coincide with the spherical coordinate unit vectors at points

on the line from 0 in the direction of k. Once the matrices Z and V of (16)

are determined, one may solve the system of linear equations for I.

We note that although a general matrix element Z is associated withmn

the pair of edges m and n, each computed integral appearing in Z is actu-mn

ally related to a source triangle attached to edge n with an observation

point at the centroid of a triangle attached to edge m. For each such ob-

servation and source triangle pair, these same integrals contribute to an

element of Z whose row index corresponds to one of the observation triangle

edges and whose column index corresponds to one of the source triangle edges.

Thus, rather than individually compute each element of Z , we instead com-

pute all vector and scalar potentials associated with each observation- and

source-face combination and then place the quantities, appropriately

weighted, into the elements of Z corresponding to the various edges associ-

ated with these faces. (The face matrix described in Appendix A provides a

convenient means for keeping track of the correspondence between faces and

18
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edges as well as for determining the current reference direction, within each

patch.) Doing the computations in this fashion results in up to a nine-fold

increase in efficiency in filling the matrix Z over the direct edge-by-edge

approach.

In accordance with the above discussion, let us consider the evaluation

of the vector and scalar potential integrals for a given source and observa-

tion face combination. Fig. 6 illustrates an observation point in face p

with current sources residing in face q. For purposes of illustration, we

assume the edges of face q are numbered 1, 2, and 3 with edge lengths Zi Q2 P

and Z3' and opposite vertices at rl, r2' and r3 respectively. We further

denote face q simply as triangle fwith area Aq . Each of the three basis

functions which may exist simultaneously in T is proportional to one of the

vectors pli P2 ' and p3 defined in Fig. 6, where the subscripts correspond to

the associated edges and we have dropped the ± superscripts. Each of the

vectors pi, i = 1,2,3, is shown directed away from its associated vertex in

the figure, but may instead be directed toward the vertex if the current

reference direction for that edge is into the triangle. Consequently,

Pi (r' - ri), i = 1,2,3, (24)

where the positive sign is used if the positive current reference direction

is out of Tq and the negative sign is used otherwise. We wish to evaluate

the magnetic vector potential,

47T q i dS', (25)
Tpqq  

2A q  
R p  

'

and electric scalar potential,

19
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Fig. 6. Local co6rdinates and edges for source
triangle T with observation point in tri-
angle TP.
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pq= , (26)
i 47TEJ,. q A~ q

associated with the ith basis function on face q observed at the centroid

of face p. In (25) and (26),

RP = Ircp - j,1 (27)

where r cp is the position vector of the centroid of face p.

Integrals (25) and (26) are most conveniently evaluated by transforming

to area coordinates [20] within the source triangle. Fig. 7 shows the posi-

tion vector r' at some arbitrary point in T
q . The vectors Pi then divide T

q

into three regions of areas A1 , A2, and A3 which are constrained to satisfy

q3
A1 + A2 + A3 = Aq . We define the normalized area coordinates as

A,
_ P (28a)

A
q

2 9 (28b)
A 
q

A3
3 ,(2 8c)

A
q

which, because of the area constraint, must satisfy

+ 9 + = 1. (29)

Note that all three coordinates vary between zero and unity in Tq and that at

the triangle corners, -1' r2 and r the triplet ( , , C) takes on the values

(1,0,0), (0,1,0), and (0,0,1), respectively. The transformation from Cartesian

to area coordinates may be written in vector form as

r' r +  r2 
+ r3 ' (30)

21



/A

0

Fig. 7. Definitions of areas used in defining
area coordinates.
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where C, n, and are subject to the constraint (29). It can easily be shown

that surface integrals over Tq transform as follows:

g6) dS = 2 g( + - + d~dn. (31)JT 0i f 1 r2 r3)

With (24), (27), (30), and (31), (25) and (26) may now be written as

A q + i4__ (- I q + r IPq + r I q  r I p q )  (32)

and

Opq I pq (33)

where

pq f f l-n e-jkRP

Ipq= fO O e-J ddn, (34a)

Il4- e-jkRp
Ipq el-(4b

= e- dEdn, (34b)

0 0 RP

Ilfl-neJ
kR p

Ip q  fl flnne d~drl, (34c)
n 0 0 R

IPq = Ipq - Ipq - Ipq (34d)

E n

Thus we see that only three independent integrals, (34a) - (34c), must be

numerically evaluated for each combination of face pairs p and q. The three

integrals, in turn, contribute to up to nine elements of Z in (17). For a

closed object, the number of independent integrals to be computed turns out

i
to be (4/3) N2 . Numerical evaluation of the integrals (34a) - (34c) may be 1

accomplished by using numerical quadrature techniques specially developed for
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triangular domains [21] together with the procedures discussed in Appendix B.

III. MAGNETIC FIELD FORMULATION

In this section, the magnetic field integral equation (MFIE) is derived

for a conducting scatterer S. Since the MFIE applies only to closed bodies,

throughout this section we assume that S has no boundary edges. The vector

basis functions f of the previous section, used there as expansion and test-n

ing functions for the EFIE, are chosen to play the same roles here in the nu-

merical solution of the MFIE. The resulting moment matrix elements are given

and their numerical evaluation is also discussed in this section.

Magnetic Field Integral Equation

The magnetic field integral equation is derived by noting that the in-

duced current J on S is related to the incident and scattered magnetic fields

Hi and Hs, respectively, by

j = n^x (Pi + Hs), (35)

where n is an outward unit normal vector on S. It may be shown by a detailed

limiting argument [19] that for observation points r not on an edge,

x H = lim n x V xA

fi + n x _ I 3 x V'GdS' (36)
2 4 fS

where G = exp (-JkR)/R and r approaches S from the exterior. Combining (35)

and (36), we obtain the magnetic field integral equation (MFIE):
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2 4n
n i X x V'GdS'. (37)

Eq. (37) is an integral equation of the second kind (i.e., the unknown ] ap-

pears outside as well as under the integral), and the kernel is regular. In

fact, if S is a triangulated surface and r is some point on S interior to a

planar triangular face, then the current in that face does not contribute to

the integral since j x (-r - ') is parallel to n there. A slight modifica-

tion to (36) and (37) is required if r is directly on an edge [22]; this sit-

uation will not arise in the present approach, however.

Expansion and Testing Procedure

As with the EFIE, we find the functions f to be suitable both as expan-n

sion and testing functions. Treating the testing procedure first, we test

(37) with f and use approximations paralleling those yielding (13) and (14)n

to obtain

-c+ --

£m> - zm^ ( ) __ n+  x () +dS'
-C-.-

+<J' fm m - x dS(
2 M 0f m I

+ +

where n- is the outward surface normal in triangle T and
m m

+ (C±+3
+m e m )/(R 3 . Substituting expansion (9)

$I=I~ (r (39)IJk (jR
for 3 results in a matrix equation of the form

8 I I i , (39)
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where the elements of the matrix - [S I]and the column vector I - [I mI

are given by

=M n > - m 2 nn x (JxV'G dS'

- C-

+ - * 1 - (V'G) dS ( 0Pm ^- i I  m (40

2- nm xrG dS (i0)

and
-C+ -c-

F X -ic+) -m i-c- (41)l i  £mL x Hi(r ) * + flx H.( .m = m m m 2 nm

Solution of (39) yields the column vector I of coefficients of the current

expansion.

Evaluation of Matrix Elements

One notes that a matrix element 8nM is associated with edge pair m and

n of S, whereas the integrals and observation points appearing on mn

in (40) are associated with the faces that are connected to edges m and n.

Consequently, it is efficient, as with the EFIE, to evaluate all integrals

required for a given face-face combination and then to sort the integrals

into the appropriate rows and columns of 8 with the aid of the face matrix

(Appendix A), which provides a mapping from faces to edges.

Referring to Fig. 6 and the analysis following (24), we may write the

required integrals in terms of the vector integral

i _ ) P, I (r c p - r')(l+JkRp ) e dS', p~q, (42)
4 fT q [ 2A2q  (Rp)3
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which represents the contribution at the centroid of the pth triangle due to

the ith basis function (i = 1,2,3) in triangle q. If p-q, Ipq =. Eq. (42)
i

can be written in terms of area coordinates defined on Tq as

Li q - q - Tpq\
1

i( 4X i) J + I + -2 J n 3J '  (43)

where

Jpq = f l-n (+JkRP e ddn (44a)

0 0 (RP)

Iqne -jkRP
S=. (l+jkR ) e ddn (44b)
0 0 (Rp )3

jp l f
l- n e -j

k p
= n (l+jkR') --kRP (44c)

r) 0 0 (RP)3

Jpq = Jpq - Jpq - Jpq (44d)
T1

and R is given by (27). The evaluation of (44a) - (44c) may be accomplished

by numerical quadrature by the method of [21].

We next consider the evaluation of contributions from each patch to the

symmetric product term in (40). If edges m and n do not lie on a common tri-

angle, there is no contribution to the symmetric product. If they lie on a

common triangle Tq , then let us assume for illustration that m,n - 1,2, or 3

as in Fig. 6. Then the contribution from Tq to the symmetric product is

-m 7 n q ± 2 ( )2I T +m nn dS'
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± £m n 3 icq 2  I r12 + 1 r21 + 1 2 + cq

8(A q)2 4 r m r n

+ r • r (45)

where the positive sign is selected if the reference directions of edges m

and n are both directed either into or out of Tq; the negative sign is se-

lected otherwise. If m=n, two terms of the form of (45) contribute to 6mn

one from T+ and one from T-.
m m

IV. NUMERICAL RESULTS

In this section, numerical results are presented for current distributions

induced on selected scatterers under plane wave illumination. The geometries

considered are a conducting square plate, a bent plate, a circular disk, and

a sphere. The first three of these involve open surfaces and therefore test

the EFIE approach when edges are present. The disk is also an example of a

structure whose curved boundary is not amenable to modeling by rectangular

patches, and the sphere is both an example of a closed surface, to which both

the EFIE and MFIE apply, and of a doubly-curved surface, which is not amenable

to rectangular patch modeling

Flat Plate

Fig. 8 and 9 show the dominant component current distributions along the

two principal cuts on a square plate illuminated by a normally incident plane

wave. For comparison, the solution of Glisson [18], obtained using rectang-
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Fig. 8. Distribution of dominant component of current

on 0.15X square flat plate.
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Fig. 9. Distribution of dominant component of current
on a 1.OX square flat plate.
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ular patches, is also given. The number of patches listed in the figures re-

fers to the number of charge patches in the earlier solution of Glisson and

to the number of triangles (also equal to the number of charge patches) in

the present solution. Note that these quantities play similar roles in the

two approaches. No comparison of the rate of convergence of the two approaches

should be inferred from the figures since both solutions are already

well-converged for the number oi unknowns used. Note also that the density of

data points appearing in the figures for the triangular patch solution is not

truly indicative of the linear density of the subdomains. This is because,

in effect, we show data points for every other edge, i.e. only for those edges

where the associated current normal to the edge is parallel to the current

component we wish to observe.

Fig. 8 shows the current induced on a plate 0.15X on each side. At this

low frequency, the current distribution is largely determined by the edge

conditions and this case therefore provides a good test of the method's ability

to handle surface edges. We note the absence of any anomalies in the com-

puted distribution near the plate edges. The elimination of such anomalies

is attributed to using basis functions it which the expansion coefficients

are not associated with currents at plate edges and to a testing procedure in

which potentials are not evaluated at edges [15].

Fig. 9 shows corresponding results for a I.OX square plate. It also

shows that the edge behavior of the current distribution is confined to a

smaller region near the edges than for the 0.15X plate and that the current

on the interior portion of the plate is beginning to exhibit the physical

optics-plus-standing wave distribution characteristic of the higher frequencies.
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Bent Plate

Figs.lO and 11 show the dominant component current distributions along

the center and perpendicular to the direction of current flow at two frequencies

on a square plate bent through an angle of 500. The bend is located at a

distance of one-third the plate width from an edge and a plane wave with the

electric field polarized parallel to the bend is incident normal to the

larger section of the bent plate. Other polarizations and angles of incidence

have been examined and the resulting current distributions show good corre-

spondence with those of Glisson [18].

Circular Disk

Fig. 12 shows the computed current disbribution on a circular disk il-

luminated by a normally incident plane wave. The component J is shown along

the cut across the diameter oriented perpendicular to the incident electric

field Vector. Also shown for comparison is the quasi-static solution valid

at low frequencies [23].

Sphere

Fig. 13 shows the current distribution computed by the EFIE along the

principal cuts on a 0.2A radius conducting sphere. The cases of axial inci-

dence and equatorial incidence are both considered in order to observe the

influence of the triangulation scheme on the solution. Also shown for com-

parison is the exact eigenfunction solution. Both illuminations show very

good agreement with the exact solution.

Since the sphere is a closed body, this problem may also be examined

using the MFIE. Fig. 14 shows the results of the MFIE computation. Compar-

ison of the exact solution with the MFIE computation is disappointing, partic-
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Fig. 10. Distribution of dominant component of
current on a 0.15A~ bent square plate.
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on a l.O . bent square plate.
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ularly when compared with the EFIE solution. In an attempt to try to improve

the accuracy of the MFIE, an alternative testing procedure was also examined

in which point-matching at the mid-points of edges was used. Although this

had the effect of radically changing several of the elements, including the

diagonal,of the matrix, the resultant current distributions were virtually

indistinguishable from Fig. 14 . Due to computer budget limitations, further

experimentation with frequency, number of unknowns, and triangulation schemes

was not possible. We point out, however, that the surface discretization

used results in a rather crude approximation to the sphere and we suggest that

perhaps the good agreement in the EFIE case may have been largely fortuitous.

More experimentation is obviously needed to establish the superiority of

either formulation for closed bodies.
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V. SUMMARY

In this report,the electric field integral equation (EFIE) is used with

the moment method to develop a simple and efficient numerical procedure for

treating problems of scattering by arbitrarily-shaped objects. Theobjects are

modeled for numerical purposes by planar triangular surface patch models.

Because the EFIE formulation is used, the procedure is applicable to both

open and closed bodies. Crucial to the formulation is the development of a

set of special subdomain basis functions defined on pairs of adjacent triangu-

lar patches. The basis functions yield a current representation which is free

of line or point charges at subdomain boundaries.

A second approach using the magnetic field integral equation (MFIE)

and employing the same basis functions is also developed. Although the MFIE

applies only to closed bodies, the moment matrix of the MFIE is also needed

in dielectric scattering problems and in the so-called combined field integral

equation used to eliminate difficulties with internal resonances present in

the MFIE and EFIE formulations.

The EFIE approach is applied to the scattering problems of plane wave

illumination of a flat square plate, a bent square plate, a circular disk,

and a sphere. Comparisons of surface current densities are made with previous

computations or exact formulations and good agreement is obtained in each

case. The MFIE approach is also applied to the sphere and reasonable agree-

ment with exact calculations is obtained.
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APPENDIX A

TOPOLOGICAL PROPERTIES AND MATHEMATICAL
REPRESENTATION OF TRIANGULATED SURFACES

In this appendix we consider some topological properties of a triangu-

lated surface and present a simple mathematical representation for such a

surface. In the topological discussion a number of geometrical quantities

are defined and some relationships between them are given. Consideration

is then given to a means for mathematically representing a triangulated

surface in a form that is convenient whether the surface data is supplied by

the modeler or is generated by an automatic surface triangulation computer

subprogram [24]. From this representation may be derived an alternative

representation which is actually more convenient for the subsequent

numerical processing necessary in applying the moment method.

We mention here at the outset that one aspect of the electrical repre-

sentation of the scattering problem also has a bearing on what information

is required in the geometrical representation of the surface. That factor

is that the unknowns to be solved for are the components of current normal

to each triangle edge. There are two possible senses in which the current

can flow normal to each edge and the modeler should be able to select either

choice to establish an assumed reference direction for the current at each

edge. Furthermore, it is desirable that the reference current specification

be incorporated, if possible, in the geometrical representation so as to
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minimize the amount of user-supplied data. As will be seen, the geometrical

representation given here does indeed incorporate the specification of cur-

rent reference directions.

An arbitrary body modeled by triangular patches is shown in Fig. Al.

The body is assumed to be connected, orientable, of finite extent, and

composed of ncn-intersecting surfaces. In general, a triangulated surface

modeling an arbitrary body consists of Nf planar triangular faces, Nv

vertices, and Ne edges. These geometrical elements are illustrated in Fig.

Al.

An arbitrary surface may also have Nh handles. Roughly speaking, a

handle is a portion of a surface which, if detached from the surface, would

resemble a torus (Fig. Al). Any closed, orientable surface with Nh handles

may be continuously deformed, by twisting and stretching, into a sphere with

Nh handles. These spheres with Nh handles may be thought of as canonical

objects used to classify all closed, orientable surfaces. In deforming

surfaces into spheres with handles, edges are permitted to pass through one

another, but they may not be broken or disconnected. A surface with no

handles is simply-connected; a surface with Nh handles is said to be (Nh +1)-

connected.

If a surface is open, it is bounded by one or more boundary curves

(Fig. Al), each of which is assumed to form a closed, non-intersecting

curve on the surface. We may associate with each boundary curve an aperture,

which is any simply-connected surface having one and only one boundary curve

congruent to the associated boundary curve on the triangulated surface.
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Fig. Al. Arbitrary surface modeled by triangular

patches.

42



Intuitively, an aperture surface is merely a surface which can be used to

cover a "hole" in another surface. (Unfortunately, the term "hole" is not

appropriate to describe regions such as that exterior to the bouldary curve

of a rectangular plate, and hence we use the term "aperture" to describe a

closing surface instead. For the rectangular plate, for example, a suitable

aperture is a rectangular box with one open end.) We assume that an

arbitrary surface has N apertures (and associated boundary curves) anda

that a total of Nb edges, called boundary edges, lie on these boundary

curves. If there are no boundary edges, N b=0 and the surface is closed.

We next employ a theorem due to Euler which states that [25] for closed

surfaces,

Nf' - N' + N' = 2(1-Nh)" (Al)
f e v h)

The primes remind us that the result applies only to closed surfaces. The

right hand side of (Al) is a topological invariant known as the Euler

characteristic and is the same for any closed surface which can be contin-

uously deformed into a sphere with N handles. To extend the theorem to
h

open surfaces, we first close all the apertures. This may be accomplished

by introducing for each aperture an auxiliary vertex and auxiliary edges

connected between this vertex and each vertex on the associated boundary

contour (Fig. A2). These auxiliary vertices may be arbitrarily located,

provided they do not coincide with one another or rest on edges or vertices

of the original surface. The resulting closed triangulated surface consists

of N' = N + N faces, N' = N + N edges, and N' = N + N vertices.
IT f b e e b v v a

3ubstituting these relationships into (Al), one obtains
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Fig. A2. Auxiliary vertices and edges used to close

apertures to form a closed body.
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Nf - Ne + Nv =2(-N) - Na, (A2)

an extension of (Al) to open bodies. We may also eliminate either Nf or Ne

in (A2) by noting that since all of the faces are triangular, 3N' I 2N'.
f e

This follows from the fact that for a closed surface, each edge is counted

twice if we sum the three edges per triangle over all the triangles. Use

of this relation to eliminate Nf and N , respectively, in Eq. (A2) yields

Ne = 3Nv + 3Na + 6(N h-1) - Nb (A3)

and

Nf = 2N + 2N + 4(N h-1) - N . (A4)

Eq. (A3) may be used to determine the number of unknowns to be found if one

knows the number of vertices, apertures, handles, and boundary edges of the

model. Since currents normal to boundary edges are zero and hence are not

solved for, the number of unknowns, N, is equal to the number of surface

interior edges, Ne - Nb"

A computer subroutine, GEOM, has been developed to accept data describ-

ing a triangulated surface and to generate auxiliary information and data

necessary for further numerical processing. The subroutine requires two

sets of input data. The first is an indexed list or vertex matrix of

position vectors r1 = (x1i y1 , zi),. i - 1, 2, --- , Nv. The components of

th
the vectors r are the Cartesian coordinates of the i vertex with respect

to a global coordinate system. The second set of data is an edge matrix

E = e ij], i = 1, 2, ... , N e; j - 1, 2 (A5)

in which is listed in the i th row the indices of the two vertices to which

the it h edge is connected. The order of appearance of the vertex indices
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in each row of E assigns a vector direction to each edge, with the first

index corresponding to the tail and the second, to the head of the vector.

The cross-product of this vector with the surface normal of a face adjacent

to the edge then gives a positive reference direction for the surface

current in that face. GEOM does not actually compute surface normals to

determine the reference directions, but uses a procedure to be discussed

later.

The vertex and edge matrices together completely determine the surface

geometry, the interconnections of the edges to form triangles, and the

current reference directions. However, one notes that in filling the moment

matrix, one integrates over the surface faces and that the results of the

integrations must be placed in rows and columns of the moment matrix

corresponding to the appropriate edges. Hence it is convenient to introduce

a face matrix,

F = [f j], i = 1, 2, ..- , Nf; j = 1, 2, 3, (A6)

relating edges to the corresponding faces. The i row of the face matrix

contains the edge numbers of those edges making up the boundary of the ith

face. Subroutine GEOM makes use of information in the edge matrix to

find each face, to assign it an index, and to fill out the corresponding

row of the face matrix. The order in which the numbered edges appear in

each row may be used to assign an orientation to the boundary curve formed

by the edges of each face. We may associate this orientation , in turn,

with the direction of the surface normal of each face through the usual

convention relating a surface normal to an oriented boundary contour.

If the surface normals for all the faces are to be on the same side of the

46

L .. ..



surface (which is always possible if the surface is orientable), then if

one travels in the prescribed direction around the boundaries of two adjacent

faces he must traverse their common edge in opposite directions (Fig. A3).

GEOM makes use of this property to correctly order the elements in the face

matrix so that the orientation of all the face normals is toward the same

side of the surface. The direction of the surface normal is itially

chosen by locating the lowest numbered edge connected to edge i = 1.

Then these two edges are treated as vectors pointing away from their common

vertex and their cross-product is computed with edge i = 1 as the second

vector in the product. The surface normal is then assumed to be parallel to

this cross-product. Thus, by properly numbering the edges connected to

edge i = 1, the modeler can fix the choice of the normal for an open surface.

Furthermore, as already noted, by properly ordering the elements of the

edge matrix, he may also choose the positive reference direction for each

individual edge.

If the surface is closed (Nb = 0), the normal pointing into the region

exterior to the surface should always be chosen. In this case, GEOM

automatically determines whether the correct choice has been made by cal-

culating the volume of the model according tor
V = j dV = V-(xk) dV

JV V

= f xk i! dA = f ndA
S S

Nf

n~ n i x dA
i=i x T
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Nf

= ?nixlA, (A7)
N th n 

.i

ii x c

where Ti is the triangular patch formed by the it h face, n is the x-
x

component of the normal to T I , xi is the x-coordinate of the centroid of T
c

i i
with respect to the global coordinate system, and A is the area of T . If

the volume computed from Eq. (A7) turns out to be negative, then the modeler

has erroneously chosen the interior normal and GEOM rectifies this by inter-

changing the first two elements in every row of the face matrix. The

orientation information is used in subsequent calculations in the fullowing

way: If the boundary of a face and one of its edges have the same orien-

tation (as determined by the face and edge matrix, respectively), then the

positive reference direction for the current normal to the edge is out of

the face. Otherwise, the reference direction is into the face (see Fig. A3).

In the course of computing the face matrix, GEOM also determines all

boundary edges. it si:, sorts them into their corresponding boundary curves

and hence determines how many apertures are present. Then using Eq. CA2),

it determines how many handles the surface has and computes the number of

interior edges (i.e., the number of unknown current coefficients) by N =

Ne - N1 . Finally, as a partial check on the correctness of the triangulation

schetie, CEOM checks to see if (A3) and (A4) are satisfied. This test would

fail, for example, if through an error :n an entry in the connection matrix

a patch was not triangular, but quadrilateral.
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orientations and current reference
direction at an edge.
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APPENDIX B

EVALUATION OF INTEGRALS APPEARING

IN THE ELECTRIC FIELD FORMULATION

In the solution of the EFIE using triangular patches, the numerical

evaluation of the following three integrals is required:

lIl- 
- j k R

I= f e R d~dn, (Bi)

E=o

I l l - n C e -jkR
I =J _ d~dp, (B2)

n= C=0 R

and

I = jn n - d~dn, (B3)

where R = IT - ' and r' is a position vector within a triangle whose area

coordinates are E and n. If the observation point r is within the triangle,

then R will be zero for some value of C and p and the integrands of all three

integrals will be singular. To circumvent difficulties with this case, we

rewrite (Bl) - (B3) as

l= e ) d~dn + fl dd, (B4)J=0  6= ~R J= J=0

l -R {- - 1I-

= R f ( ) ddp + 1 n d~dq (B5)
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and

rir 1 - jkR

=J fC= )dEdn + J =0l. d~dri. (B6)

The integrand of each of the first terms in (B5) - (B6) is non-singular

and hence can be numerically integrated by using quadrature formulas for

triangular regions obtained by Hammer et al. [21). The remaining integrals

in (B4) - (B6) are evaluated analytically by the following procedure.

We beg-in by expressing r' in terms of area co-ordinates as

r' = r 1+ (r2- r1) ' (r-_lr)' (B7)

where r,, r 2 and r 3 are the position vectors of the vertices of the source

triangle. Hence,

R = [I~I= ( l)-(-r2 -) 1 -(-r3rl1) rd

= [A 2 + 92 + F n+Eq+F!,(8

where

A r (r 2

B r --
13-r1 1

C - 2(ir-r 1  *- (2- r1)I (B9)

D =-
2 (r-rl 1 r3-

E =2(r2r1) (r 3-rl1

and F=IrI

With these definitionsthe second integral in (B4) can be expressed as
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f = 0  [AI 
2  2 d~dr (BlO)

=O =0 [AC 2 + Br2 + CE + Dn + EC9 + F1

Next, making use of (2.261) of Gradshteyn 
and Ryzhik [26], one obtains from

(BlO)

I Jr2 -r 1 1f n vA + B 1  + C1 + D1 + E1 j dn

w e- n LA2n2 + B2 + C2 + D2 n + E dn (BII)

where

A1 = r 3 -r 2 12 ,

B =- (rBr2) (r-r2),

CI = r-r212,

D, = (r2-rl) • (r3-r2)/Ir2-rlI,

E= (r 2r) (i- 2)/I-r1I,

A2 = Ir3-r1 1
2 ,

B2 =- 2(r 3 -rl) (r-r 1 ),

C 2  = I r_-r112,

(r2-rl) (r3-r1)
D=

Ir 2- 12
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and
E r2-r 1) •r-r 1)

2

The remaining integrals in (B1) are both of the form

A = fO Zn /A 2 + BI + C1 + + E dn. (B12)

With the subsitution X = D + El, equation (B12) reduces to

D +E1
IA= Zn [ ax + bx + c + x] dx, (B13)

x=E1

B D -2A1 E

D1

CD -D AE2

2-x

and, in terms of the variable x, R = ax + bx + c. Eq. (B13) may be written

as

D I+E1

DI I = = 1 CE 1 Zn (R+x) dx (B14)
x=1

and hence the problem is reduced to evaluating the integral

Ii = fx2 Zn (R+x) dx. (B15)
xlI

By some elementary substitutions and integration by parts, I1 may be written

53



as

SI x 2kn R+x) +12 (B16)

where b

12 2 (a-)x +2 dx.

(R+x)

Next, we note that

(a-l)x + b + 2 (a )J--l
2 Ex +__T____-a-___1_________Ea

R+x R2_ 2

+ -ab R-x

Lx+ 2 (a-)][RIxIb

+ 2(a-1) + c 2

a- 2(a4(a-)2

Defining b
u = x + 2(a-1)

and
2  c b 2

a-i 4(a-1) 2

12 may be written as

12 2 + d2 du - 2 + 2 du + b-- u+ du, (B7)

U=u 1  U=U 1  U=U 1

where
b

U, = x + b
S 1 2(a-1)
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b
u 2  x 2 + 2(a-l)

We note at this point that d 2 is always greater than or equal to zero,

as can be easily verified by noting that R2 - x2 is greater than or equal to

zero for all x. The last two integrals in (B17) may be integrated with the

aid of tables and the result combined with (B16) to yield

-lu
[xn (R + x) - R x - d tan-

2 2 x
b Rx 2+ 4(a-l) a-1 + 13, (B18)

x1

where

f3 =  uR

U 1 u 2 + d2  du.

With the substitution z = u + jd, 13 can be written as

I = Re -fu2RdzJ.
3 z

u 1

Using Eq. 2.267.1 of [ 26] and taking the real part with some straight-forward

but tedious algebra,-one obtains

I 1  x + b a n (R+x) -x- "n 12,ra R+2ax+bI
a-1 2v (a-l)

+ d Ftanl -tan 1 2d(Bl 219)
S a bx + 2c (B}
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Combining the results of all these steps, one may now write I'as

I(1= 1(1 u Zn (Ri + x1)

r 2r ;1=1 1

b.
9,n 12 7 Ri  + 2a i +  b l

2 /ai (a -1)
I i

+ du tan-' di d, tan- 1 ,2d, R (a -1) (B20)
i ta- i b an- i x + 2 c i JJI=0

where

R. =  /A. n  + B + C.

b i i

b
Ui = xi + 2 (ai-1)

X. = D i + Ei

i I _ji12

Ai  r -2(-r ) (2 -ri

ci r- 2-ril ,

( 2- r) I (-- i

Di = _ _,

2 - r.

(r2-) •r (r-)Ei , 2 -

56



2f

a1 = /Di ,

2

bi= (B iD i 2A 1E p /D 2,

2 2 2
c=(Ci Di Bi DiEi +Ai Ei )/D

2 Ci 
b i

d. ai-i 4(a1-l)

Some comments concerning the evaluation of (B20) are in order: 1) If either

D1 or D2 is zero (which happens whenever the corner of the triangle at rl' or

r2, respectively, forms a right angle), Eq. (B20) cannot be evaluated in the

form indicated. A simple way to circumvent this difficulty is to cyclically

permute the assignment of vectors ri, r2 and r3 to the corners of the triangle

until neither D1 nor D2 is zero, i.e. until the right angle corner is placed

at r3" Under this new assignment of vertex indices, (B20) is valid. 2) The

argument of either of the loga:ithmic terms appearing in (B20) may vanish

for certain combinations of parameters. Whenever this situation occurs, how-

ever, the corresponding coefficient of the logarithmic term also vanishes and,

by L'Hospital's rule, the product can be shown to vanish as well.

At this stage, all that remains is to evaluate the singular integrals in

(B5) and (B6). Consider the pair of integrals,

p = fl fl d~dn (B21a)R

n=0 =O

and
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fQ f n (B21b)n- C=O R=

where

R = A 2 + Bn + C& + Dn + E~n + F].

With a= A,bI = C + E and C, = Bn2 + Dl + F, we have

R [alc2 + b1  + 1

Using Eq. 380.011 of [ 27], one obtains for (B21a),

p 1 n2 (A+B-E) + n (-2A-C+D+E) + A+C+F dn

0=O

A J [B 2 + Dn + F] dn - f I d~d
A =0 A=0 = R

E f jl.- n)d~d (B22)
2A0=0 C=O R

One notes that the last two integrals in (B22) are I', evaluated earlier, and

I of (B21b). Again using Eq. 380.201 of 27] and evaluating the first two

integrals in (B22), one obtains

J1-J2

1p 2 c-1 I I B3
PF A 2A 2A Q (B23)

where
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J,= (2B-C+D)+E) (v'B+D+F) +(2A+C-D-E) (VA+C+F)

+ 4(A+C)(B+D+F) +_4F(B-C-E) 
- (C+D+E) 

2

8 (A+B-E)31

x Ik 2.(A+B-E)(B+D+F)+ (2B-C+D-E)

2vr(A+B-E) (A-IC+F)- (2A+C-D-E)

and

= (2B+D)(/B-iF) - A

2 4B

+ 4BF-D 2  k 12/B-(B+D+F) + 2B +D

8BrB2VB-

Adopting the same procedure, I Qin (B2lb) can be written as

__3_ D V E LI 
B4

Q B 2B 2B ~ B4

where

S= (2A+C-D-E) (/A-+C+F) + (2B-C+D-E) (B+-+F)
3 4(A+B-E)

+ 4(A+C)(B+D>+F) + 4F(B-C-E) 
- (C+D+E)2

8 (A+B-E) 3/2

xk 2v7(A+B-E) CA+6+-F)+ (2A+C-D-E)l

12V(A+B-E)(B+D+ F)- (2B-C+D-E)l

and

= (2A+C) (,rA-+ 7 F) - CAT
4 4A

+ 4AF-C 2 Z 2vrA( TCF + 2A+C

8 A IK 2AKF + C
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Equations (B23) and (B24) may be solved simultaneously for the unknown inte-

grals I and IQ to obtain

4B(J- 1J 2 ) - 2E(J 3-J4) - (2BC-ED) V (B25)
4AB-E 2

and

4A(J 3-J4) - 2E(J 1 -J 2 ) - (2AD-EC) I'
S(4ABCE2  (B26)

This completes the analytical evaluation of the singular integrals.
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* MISSION

Rome Air Development Center
RADC ptans and executeA 4eeoch, devetopnent, te~t and
..s eLected acquiL6ition pxogtam~ in Appo'rt oj Command, Contuto

* CormurnLcation6 and InteUigence (C31) activitieA. TechnLcat
and enginee~~Zng &*uppov~t withiZn at'eaa otj technicot competence
is pkovided to ESV P'tog'zam O64ces~ (PO.6j and otheA' ESV
etemen-t6. The p~incipat .technicat n'dz6on atea,6 au~
comman.Lccftonz, etectAomagnetic gui.dance and czont't, 6uW%-
veittnce o6 gywwund and ae~o,6pace objecet6, inte2~igence d~ata
cottection and handting, injoiunation .6y4stem technotogyi,
iono~pheA.Zc pJxopagatA on, 6otid 6ta.te 6e-LenceA, mie'Lowue
phy.6ic. and eteetAon&. tiabi"~t, maintinabZi~ty and

* compatibitity.


